Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Med (Lond) ; 23(2): 157-163, 2023 03.
Article in English | MEDLINE | ID: covidwho-2263047

ABSTRACT

During the coronavirus 2019 (COVID-19) pandemic, the implementation of non-contact infrared thermometry (NCIT) became an increasingly popular method of screening body temperature. However, data on the accuracy of these devices and the standardisation of their use are limited. In the current study, the body temperature of non-febrile volunteers was measured using infrared (IR) thermography, IR tympanic thermometry and IR gun thermometry at different facial feature locations and distances and compared with SpotOn core-body temperature. Poor agreement was found between all IR devices and SpotOn measurements (intra-class correlation coefficient <0.8). Bland-Alman analysis showed the narrowest limits of agreement with the IR gun at 3 cm from the forehead (bias = 0.19°C, limits of agreement (LOA): -0.58°C to 0.97°C) and widest with the IR gun at the nose (bias = 1.40°C, LOA: -1.15°C to 3.94°C). Thus, our findings challenge the established use of IR thermometry devices within hospital settings without adequate standard operating procedures to reduce operator error.


Subject(s)
COVID-19 , Thermometry , Humans , Body Temperature , Temperature , Thermometry/methods , COVID-19/diagnosis , Volunteers
2.
JMIRx Med ; 3(2): e30344, 2022.
Article in English | MEDLINE | ID: covidwho-1951914

ABSTRACT

Background: During COVID-19, clinical and health care demands have been on the rapid rise. Major challenges that have arisen during the pandemic have included a lack of testing kits, shortages of ventilators to treat severe cases of COVID-19, and insufficient accessibility to personal protective equipment for both hospitals and the public. New technologies have been developed by scientists, researchers, and companies in response to these demands. Objective: The primary objective of this review is to compare different supporting technologies in the subjugation of the COVID-19 spread. Methods: In this paper, 150 news articles and scientific reports on COVID-19-related innovations during 2020-2021 were checked, screened, and shortlisted to yield a total of 23 articles for review. The keywords "COVID-19 technology," "COVID-19 invention," and "COVID-19 equipment" were used in a Google search to generate related news articles and scientific reports. The search was performed on February 1, 2021. These were then categorized into three sections, which are personal protective equipment (PPE), testing methods, and medical treatments. Each study was analyzed for its engineering characteristics and potential social impact on the COVID-19 pandemic. Results: A total of 9 articles were selected for review concerning PPE. In general, the design and fabrication of PPE were moving toward the direction of additive manufacturing and intelligent information feedback while being eco-friendly. Moreover, 8 articles were selected for reviewing testing methods within the two main categories of molecular and antigen tests. All the inventions endeavored to increase sensitivity while reducing the turnaround time. However, the inventions reported in this review paper were not sufficiently tested for their safety and efficiency. Most of the inventions are temporary solutions intended to be used only during shortages of medical resources. Finally, 6 articles were selected for the review of COVID-19 medical treatment. The major challenge identified was the uncertainty in applying novel ideas to speed up the production of ventilators. Conclusions: The technologies developed during the COVID-19 pandemic were considered for review. In order to better respond to future pandemics, national reserves of critical medical supplies should be increased to improve preparation. This pandemic has also highlighted the need for the automation and optimization of medical manufacturing.

3.
IPEM Transl ; : 100006, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1936583

ABSTRACT

With fever being one of the most prominent symptoms of COVID-19, the implementation of fever screening has become commonplace around the world to help mitigate the spread of the virus. Non-contact methods of temperature screening, such as infrared (IR) forehead thermometers and thermal cameras, benefit by minimizing infection risk. However, the IR temperature measurements may not be reliably correlated with actual core body temperatures. This study proposed a trained model prediction using IR-measured facial feature temperatures to predict core body temperatures comparable to an FDA-approved product. The reference core body temperatures were measured by a commercially available temperature monitoring system. Optimal inputs and training models were selected by the correlation between predicted and reference core body temperature. Five regression models were tested during the study. The linear regression model showed the lowest minimum-root-mean-square error (RSME) compared with reference temperatures. The temple and nose region of interest (ROI) were identified as optimal inputs. This study suggests that IR temperature data could provide comparatively accurate core body temperature prediction for rapid mass screening of potential COVID cases using the linear regression model. Using linear regression modeling, the non-contact temperature measurement could be comparable to the SpotOn system with a mean SD of ± 0.285°C and MAE of 0.240°C.

4.
Front Artif Intell ; 4: 590189, 2021.
Article in English | MEDLINE | ID: covidwho-1346429

ABSTRACT

There is compelling support for widening the role of computed tomography (CT) for COVID-19 in clinical and research scenarios. Reverse transcription polymerase chain reaction (RT-PCR) testing, the gold standard for COVID-19 diagnosis, has two potential weaknesses: the delay in obtaining results and the possibility of RT-PCR test kits running out when demand spikes or being unavailable altogether. This perspective article discusses the potential use of CT in conjunction with RT-PCR in hospitals lacking sufficient access to RT-PCR test kits. The precedent for this approach is discussed based on the use of CT for COVID-19 diagnosis and screening in the United Kingdom and China. The hurdles and challenges are presented, which need addressing prior to realization of the potential roles for CT artificial intelligence (AI). The potential roles include a more accurate clinical classification, characterization for research roles and mechanisms, and informing clinical trial response criteria as a surrogate for clinical outcomes.

5.
Disaster Med Public Health Prep ; 16(4): 1634-1644, 2022 08.
Article in English | MEDLINE | ID: covidwho-1169321

ABSTRACT

Many countries have enacted a quick response to the unexpected coronavirus disease 2019 (COVID-19) pandemic by using existing technologies. For example, robotics, artificial intelligence, and digital technology have been deployed in hospitals and public areas for maintaining social distancing, reducing person-to-person contact, enabling rapid diagnosis, tracking virus spread, and providing sanitation. In this study, 163 news articles and scientific reports on COVID-19-related technology adoption were screened, shortlisted, categorized by application scenario, and reviewed for functionality. Technologies related to robots, artificial intelligence, and digital technology were selected from the pool of candidates, yielding a total of 50 applications for review. Each case was analyzed for its engineering characteristics and potential impact on the COVID-19 pandemic. Finally, challenges and future directions regarding the response to this pandemic and future pandemics were summarized and discussed.


Subject(s)
COVID-19 , Robotics , Humans , COVID-19/epidemiology , Pandemics/prevention & control , Digital Technology , Artificial Intelligence
SELECTION OF CITATIONS
SEARCH DETAIL